| Description |
608 pages : diagrams ; 27 cm |
| Content |
text txt |
| Media |
unmediated n |
| Carrier |
volume nc |
| Edition |
4th ed. |
| Note |
First edition, 1902. |
|
"List of authors quoted: p. [591]-594. |
| Bibliography |
Includes bibliographical references and indexes. |
| Contents |
pt. I. The processes of analysis. Complex numbers -- The theory of convergence -- Continuous functions and uniform convergence -- The theory of Riemann integration -- The fundamental properties of analytic functions; Taylor's, Laurent's, and Liouville's theorems -- The theory of residues; application to the evaluation of definite integrals -- The expansion of functions in infinite series -- Asymptotic expansions and summable series -- Fourier series and trigonometrical series -- Linear differential equations -- Integral equations -- pt. II. The transcendental functions. The gamma function -- The zeta function of Riemann -- The hypergeometric function -- Legendre functions -- The confluent hypergeometric function -- Bessel functions -- The equations of mathematical physics -- Mathieu functions -- Elliptic functions. General theorems and the Weierstrassian functions -- The theta functions -- The Jacobian elliptic functions -- Ellipsoidal harmonics and Lamé's equation. |
| Subject(s) |
Series, Infinite.
|
|
Functions.
|
|
Harmonic analysis.
|
| Alternate Author |
Watson, G. N. (George Neville), 1886-1965, author.
|
|